

0960-894X(95)00478-5

BALANCED AT₁ AND AT₂ ANGIOTENSIN II ANTAGONISTS. I. NEW ORALLY ACTIVE 5-CARBOXYL IMIDAZOLYL BIPHENYL SULFONYLUREAS.

Pierre Deprez,* Bertrand Heckmann, Alain Corbier,

Jean-Paul Vevert, Michel Fortin and Jacques Guillaume.

Roussel Uclaf, 102 route de Noisy, 93235 Romainville Cedex, France

Abstract: A series of substituted imidazolyl biphenyl sulfonylureas have been synthesized. Substitution on the imidazole ring but essentially on the urea side chain significantly increased AT₂ binding with cyclohexylmethyl, cyclopentylmethyl and benzyl as the most effective substituents. Imidazole 13d, as a representative member of this series, displayed nanomolar binding affinity for both the AT₁ and AT₂ angiotensin II receptor subtypes as well as oral activity.

The Renin Angiotensin System (RAS) is known to play an important role in blood pressure regulation and electrolyte homeostasis. Angiotensin II (AII), the biologically active peptide of the RAS, is a potent vasoconstrictor agent and its regulation has been achieved by inhibition of the metalloprotease ACE² and of the aspartyl protease renin. More recently, AII receptor antagonists have been investigated as an alternative approach in blocking the hypertensive response to endogenous AII.

Many AII antagonists⁴ have been reported since the discovery of Losartan⁵ by DuPont. To date, those in development are selective for only one of the two identified AII receptors,⁶ the AT₁ subtype, which is responsible for the pressor response and most of the known cardiovascular and renal effects⁷ induced by AII. A second AII receptor, the AT₂ subtype, has been identified in various tissues using selective ligands such as PD 123177 ^{8a} or CGP 42112A. ^{8b} The physiological action mediated by the AT₂ receptor has not yet been clearly identified even if some groups have shown correlations with renal free water clearance, cerebral blood flow regulation, skin wound healing, collagen synthesis in cardiac fibroblasts and restenosis following vascular injury.⁹

In animal models and in the clinic, blockade of the AT₁ receptor by Losartan led to higher circulating AII levels¹⁰ and the consequences of chronic overstimulation of the AT₂ receptor (positive or negative) are unknown. For this reason, after the discovery of imidazolyl biphenyl sulfonylurea HR 720,¹¹ our AT₁ selective AII antagonist currently under clinical trials, we focused our attention towards compounds that bind to both AT₁ and AT₂ receptor subtypes.

Nonpeptide AT₁ antagonists with significant affinity for the AT₂ receptor were reported some times ago first by Karl Thomae¹² (BIBS 39: AT₁/AT₂ 29/480 nmol) and then by our Hoechst/Roussel group¹³ (S 920029). More recently, Merck and DuPont Merck have published ^{9,14} a series of papers on compounds with high binding affinity for both AT₁ and AT₂ receptor subtypes. Starting from AT₁ selective antagonists in the imidazole,

2606 P. Deprez et al.

imidazopyridine and triazolinone series, they showed that considerable enhancement of the AT₂ binding affinity could be achieved by replacement of the tetrazole moiety with a lipophilic acylsulfonamide or sulfonylcarbamate. These publications prompted us to disclose our own results in the imidazolyl biphenyl sulfonylurea series.

Chemistry

All compounds prepared for this study were synthesized through a convergent approach by coupling the requisite imidazole¹¹ 1 with the bromomethyl biphenyl sulfonylamidine¹¹ 3 as described in scheme I. The major product was the desired N₁ isomer (91 % vs 9 % for the N₃ isomer). Sulfonylamidine was cleanly deprotected by refluxing in a 1:1 mixture of concHCl/EtOH and the resulting sulfonamide 4 was converted to sulfonylurea 5 with the appropriate isocyanate in the presence of K₂CO₃. Alternative access to sulfonylureas 5 involved the reaction of ethylsulfonylcarbamate 6 (obtained by reaction of sulfonamide 4 with the ethyl chloroformiate) with the requisite amine in refluxing toluene, without affecting the ethylester group. Sulfonylureas 5 were finally saponified in aqueous ethanolic NaOH solution at room temperature (in order to avoid a possible decarboxylation of the imidazole ring) to give the free acids 7.

Scheme I

(a) K_2CO_3 , DMF, rt; 45h; (b) conc. HCl, EtOH, reflux 2 h; (c) O=C=N-R₂(1.3eq), K_2CO_3 (2 eq), acetone, reflux 1h (65-90%); (d) CICO₂Et, K_2CO_3 , DME, reflux, 2h; (e) R_2NH_2 , toluene, reflux, 15h; (f) 2N NaOH, EtOH, rt, 24h.

The urea moiety of 4-diffuoromethylthio imidazoles 13 was analogously prepared from sulfonylamidine 12. However, the diffuoromethylthio group was introduced through a procedure described in scheme II. Treatment of 4-paramethoxybenzylthio imidazole¹¹10 with a 5 to 1 mixture of trifluoroacetic acid/anisole in the presence of mercuric trifluoroacetate led to deprotection of the SH group which was trapped *in situ* as mercury salt. Bubbling

H₂S through an ethyl acetate solution of this salt cleanly generated the thiol 11 which was then treated (after removal of the black precipitate on celite but without any further purification) in DMF with sodium chlorodifluoro acetate in the presence of NaI to afford 4-difluoromethylthio imidazole 12 in 75 % overall yield.

Scheme II

(a) $Hg(CF_3CO_2)_2$, TFA, anisole, 0°C to rt, 20 min; (b) H_2S , EtOAc, rt, 45 min; (c) $CICF_2CO_2Na$, NaI, DMF, $87^{\circ}C$, 45min; (d) conc. HCI, EtOH, reflux 2 h; (e) $O=C=N-R_2$ (1.3eq), $K_2CO_3(2 eq)$, acetone, reflux 1h; (f) 2N NaOH, EtOH, rt.

Results and discussion.

The *in vitro* binding affinities¹¹ of the compounds described in this paper (Tables I and II) were determined by their ability to displace the specific binding of ¹²⁵I-AII from rat liver membranes (AT₁ receptors) and rabbit uterus membranes (AT₂ receptors) and are expressed as IC₅₀ values. Selected compounds were further evaluated *in vivo* after intravenous and oral administration for their inhibition of the pressor response induced by AII (0.75 µg/kg i.v.) in normotensive pithed rats and are expressed as ID₅₀ values¹¹.

During the course of our search for potent tetrazole isosteres within the imidazole series, we noticed that replacing the tetrazole moiety by the propylsulfonylurea group usually increased the AT₂ affinity by at least two orders of magnitude. Therefore, we decided to investigate the effects on AT₂ affinity of substitution on the urea side chain. Ureas 7 and 13, close analogs of HR 720, were synthesized. We found that substitution on the urea did not significantly modify the AT₁ binding affinity (most compounds listed in Tables I and II displayed nanomolar or subnanomolar AT₁ affinity) while dramatically improving AT₂ activity.

We first turned our attention to linear alkyl chains on the urea (Table I). The AT2 binding affinity was enhanced with a longer alkyl chain. The relative order of potency was methyl (7a, IC50 = 2400 nmol) < ethyl (7b, IC50 = 1900 nmol) < propyl (7c, IC50 = 920 nmol) < butyl (7d, IC50 = 96 nmol). These results are in agreement with those recently published by Merck and DuPont Merck^{14c} in their carbamates series where the *n*-butyl group was found to be optimal and where smaller alkyl groups provided less AT2 activity. However, we observed in our series the highest increase in potency when cyclohexylmethyl and benzyl substituents were used. Thus, N-cyclohexylmethyl (7e) and N-benzyl (7f) ureas showed comparable binding affinity for the AT2 receptor (IC50 = 17 nmol) with a 6-fold increase when compared to the N-butyl urea (7d). As it has already been reported for sulfonylcarbamates and acylsulfonamides, the sulfonylurea side chain appears to occupy a lipophilic

2608 P. Deprez et al.

pocket of the AT₂ receptor. Attempts to increase lipophilicity of urea 7 by introduction of a NHCHPh₂ group(7g) or a NPh₂ group (7h) resulted in a 10-fold and 50-fold decrease in potency probably due to steric hindrance and shorter length, respectively. Exchanging the potent benzyl group (7k) by the phenyl (7l) or paratolyl groups (7m) or replacing the cyclohexylmethyl group (7j) with the cyclohexyl group (7i) led to a sharp decrease in potency for the AT₂ receptor, illustrating that the methylene spacer is crucial for high binding. Cyclopentylmethyl urea 7p also displayed high AT₂ affinity similar to that of cyclohexylmethyl urea 7j.

Table I: SAR of 4-methylthio imidazole

	 		IC _{so} a	(nM)	ID _{so} b	(mg/kg)
	D4		AT1	AT2	iv	
cpds	R1	R2	AII	AIZ	1V	po
7a	Bu	NHMe	1.9	2400	0.27	4.9
7b	Bu	NHEt	0.2	1900	0.17	1.1
7c ^c	Bu	NHPr	0.5	920	0.11	0.7
7d	Bu	NHBu	0.2	97	0.09	0.2
7e	Bu	NHCH _c Hexyl	0.1	17	0.35	NT
7 f	Bu	$NHCH_{2}Ph$	0.1	17	NT	NT
7g	Bu	NHCHPh₂	0.4	170	NT	NT
7h	Bu	NPh ₂	1.2	850	5.8	NT
7i	Pr	NHcHexyl	0.5	190	NT	NT
7j	Pr	NHCH,cHexyl	0.1	5.4	0.3	1.5
7k	Pr	NHCH₂Ph	0.2	9.5	0.22	1.4
71	Pr	NHPh	2.3	2200	0.52	NT
7m	Pr	NHPh-4-Me	1.0	367	0.87	NT
7n	Pr	NHCH ₂ -2-Thienyl	0.1	14.3	NT	1.0
7p	Pr	NHCH₂cPentyl	0.1	7.0	NT	1.0
7q	Et	NHCH ₂ Ph	0.1	6.8	1.37	NT
7r	Et	NHCH _c Hex	1.3	1.3_	1.84	>10

With the two optimized sulfonylurea substitutions in place (cyclohexylmethyl or benzyl urea), our attention was focused on the 2-position of the imidazole ring. 2-ethyl imidazole 7q-r and 2-propyl imidazole 7j-k were prepared and compared to 2-butylimidazole 7e-f. It appeared that introduction of a 2-ethyl or a 2-propyl side chain resulted in a greater AT2 binding affinity (a 2 to 13-fold increase depending on the urea and 2-substitution with butylcpropylethyl). Thus, 2-ethyl imidazole 7r showed nanomolar equipotency (1.3 nmol) for both receptor subtypes. However, in vivo, after intravenous administration, 7r (resp 7q) displayed a 6-fold lower activity when compared to the 2-propyl imidazole 7j (resp 7k), indicating that a propyl chain at the 2 position of the imidazole ring seems to be the best compromise for both high AT1 and AT2 affinity and in vivo efficacy.

⁴ IC₅₀ for inhibition of specific binding of [1²⁵I]AII to rat liver (AT1) and rabbit uterus (AT2) membrane preparation (n=2-4).

b ED₅₀ following intravenous (n=4) or oral (n=18-28) administration to pithed rats for inhibition of pressor response induced by infusion of AII. For details, see ref.11

^c As its dipotassium salt (HR720)

In addition, we found that replacement of the methylthio group at the 4-position of the imidazole ring by the difluoromethylthio group resulted in a more than 3-fold improvement in the AT₂ binding affinity [13a, 13b and 13c (Table II) vs 7c, 7f and 7e (Table I), respectively].

Therefore, with the best substitutents in place on the imidazole ring (2-propyl, 4-difluoromethylthio and 5-carboxyl¹⁵), we decided to further investigate more extensively the substitution on the urea moiety (Table II). We thus prepared the potent cyclohexylmethyl urea 13d with 1.7 nmol affinity on the AT2 receptor. Benzyl urea 13e also exhibited high affinity (5.8 nmol). We then focused on modifications of this benzyl group, knowing that the methylene spacer, as already mentioned, was crucial for AT2 binding affinity. A longer side chain of two (13k) or three (13l) methylene units decreased AT2 binding affinity. Substitution on the phenyl ring retained potency for the p-fluoro substituent but weakened AT2 binding for the o-chloro (13g) and the methylene dioxy (13i) substituents. Thiophene (13m) and naphthalene (13j) were also introduced in place of phenyl (13e) but without any improvement on AT2 binding. All these data confirms that cyclohexyl methyl and benzyl substitution on the urea are optimal for AT2 potency.

Most of the compounds prepared for this study (Table I and II) were evaluated *in vivo* and, consistent with their high AT_I binding affinities, they showed potent antihypertensive activity after intravenous and/or oral

Table II: SAR of 4-difluoro methylthio imidazole

SCHF ₂ R ₁ OH SO ₂ NHCOR ₂

a,	0	See	Table	I	for	an	explanation	of
tal	oul	ated	data				•	

						.e.=.
			IC_{so}^{a} (nM)		ID₅ ^b	(mg/kg)
cpd	R1	R2	AT1	AT2	iv	ро
13a	Bu	Pr	0.5	220	0.09	0.8
13b	Bu	CH₂Ph	0.15	9.0	0.36	2.2
13c	Bu	CH ₂ cHexyl	0.2	2.5	0.60	1.7
13d	Pr	CH_cHexyl	0.07	1.7	0.22	1.1
13e	Pr	CH₂Ph	0.2	5.8	0.26	2.0
13f	Pr	CHMePh	0.3	10.6	NT	NT
13g	Pr	CH ₂ -Ph-2Cl	0.3	42	0.80	NT
13h	Pr	CH ₂ -Ph-4F	0.1	3.4	0.43	NT
13i	Pr	Piperonyl	0.3	23	0.35	10
13j	Pr	CH ₂ -2-Naphthyl	0.1	55	NT	NT
13k	Pr	CH_2CH_2Ph	0.1	28	0.64	NT
131	Pr	$CH_2CH_2CH_2Ph$	0.7	44	0.52	NT
13m	Pr	CH ₂ -2-Thienyl	0.07	7.8	0.13	3.0
13n	Pr	CH2CH2-2-Thienyl	0.03	20	0.33	3.1

administration. Among them, 7j, 7k, 7p and 13d, which exhibited the highest AT₂ binding affinity within this series (1-10 nmol), displayed comparable ID₅₀ after intravenous administrating (0.2-0.3 mg/kg) and proved to be orally active at low doses 1.0-1.5 mg/kg, illustrating that these diacidic antagonists display good apparent bioavailability, similar to HR720.

2610 P. DEPREZ et al.

Conclusion

Beginning with our AT₁ selective antagonist imidazolyl biphenyl sulfonylurea HR 720, we have identified a new series of potent and orally active compounds that bind with high affinity both to the AT₁ and AT₂ receptor subtypes. The substitution of the urea side chain has been found to be crucial for high AT₂ binding while retaining excellent AT₁ affinity with cyclohexylmethyl, cyclopentylmethyl or benzyl as the most effective side chains. The high *in vitro* potency on both receptor subtypes as well as the oral activity of compound 13d (RU 65868), associated with its structural analogy with the AT₁ selective HR 720, make it useful tool for discovering the advantages of balanced compounds over AT₁ selective antagonists.

Acknowledgement: We wish to thank D. Annoot, J.-L. Fleury, F. François and A. Vermond for their technical assistance.

Notes and References

- (1) (a) Ferrario, C. M.. J. Cardiovascular Pharmacol. 1990, 15 (Suppl. 3), S1-S5. (b) Vallotton, M. B. Trends Pharmacol. Sci. 1987, 8, 69-74.
- (2) Wyvratt, M. J.; Patchett, A. A. Med. Res. Rev. 1985, 5, 483.
- (3) Greenlee, W. J. Med. Res. Rev. 1990, 10, 173.
- (4) (a) Ashton, W.T. Exp. Opin. Invest. Drugs 1994, 3(11),1105. (b) Murray, W.V.. Chemtracts-Org. Chem. 1993, 6, 263. (c) Buhlmayer, P. Curr. Opin. Ther. Pat. 1992, 2, 1693.
- (5) Drugs Future 1992, 17, 326.
- (6) Bumpus, F. M.; Catt, K. J.; Chiu, A. T.; De Gasparo, M.; Goodfriend, T.; Husain, A.; Peach, M. J.; Taylor, D. G., Jr.; Timmermans, P. B. M. W. M. Hypertension 1991, 17, 720.
- (7) Timmermans, P. B. M. W. M.; Wong, P. C.; Chiu, A. T.; Herblin, W. F.; Benfield, P.; Carini, D. J.; Lee, R. J.; Wexler, R. R.; Saye, J. A. M.; Smith, R. D., Pharm. Rev. 1993, 45, 205.
- (8) (a)Blankley, C. J., Hodges J. C.; Klutchko, S. R., Himmelsbach, R. J.; Chucholowski, A; Connolly, C.J.; Neergaard, S. J.; Van Nieuwenhze, M.S.; Sebastian, A.; Quinn, J. III; Essenburg, A.D.; Cohen, D. M. J. Med. Chem. 1991, 34, 3248.
 (b) Whitebread, S.; Mele, M.; Kramer, B.; de Gasparo, M.; Biochem. Biophys. Res. Commun., 1989, 163, 284.
- (9) For references, see references 4a, 7 and Hodges J. C., Exp. Opin. Ther. Patents 1994, 4 (11), 1325
- (10) (a) Christen, Y.; Waeber, B.; Nussberger, J.; Porchet, M.; Borland, R.M.; Lee, R.J.; Maggon, K.; Shum, L.; Timmermans, P.B.M.W.M.; Brunner, H. R.; Circulation 1991, 83, 1333. (b) Goldberg, M.R.; Tanaka. W.; Barchowsky, A.; Bradstreet, T.E.; McCrea, J.; Lo, M.-W.; McWilliams, E.J.; Bjornsson, T. D. Hypertension. 1993, 21, 704.
- (11) Deprez, P.; Guillaume, J.; Becker, R.; Corbier, A.; Didierlaurent, S.; Fortin, M.; Frechet, D.; Hamon, G.; Heckmann, B.; Heitsch, H.; Kleemann, H.-W.; Vevert, J.-P.; Vincent, J.-C.; Wagner, A.; Zhang, J. J. Med. Chem. 1995, 38, 2357.
- (12) Ries, U. J.; Mihm, G.; Narr, B.; Hasselbach, K. M.; Wittneben, H.; Entzeroth, M.; Vanmeel, J.C.A.; Wienen, W.; Hauel, N.H.; J. Med. Chem. 1993, 36, 4040.
- (13) Weimer, G.; Schoelkens, B.A.; Busse, R.; Wagner, A.; Heitsch, H.; Linz, W. Pharm. Pharmacol. Lett. 1993, 3, 24.
- (14) (a) Santella III, J.B.; Duncia, J.V.; Ensinger, C.L.; VanAtten, N.K.; Carini, D.J.; Wexler, R.R.; Chiu, A.T.; Wong, P.C.; Timmermans P.B.M.W.M.. Bioorg. Med. Chem. Lett. 1994, 4, 2235. (b) Naylor, E. M.; Chakravarty, P. K.; Costello, C. A.; Chang, R. S.; Chen, T.-B.; Faust, K. A.; Lotti, V. J.; Kivlighn, S. D.; Zingaro, G. J.; Siegl, P. K. S.; Wong, P. C.; Carini, D. J.; Wexler, R. R.; Patchett, A. A.; Greenlee, W. J.. Bioorg. Med. Chem. Lett. 1994, 4, 69. (c) Quan, M.L.; Olson, R.E.; Carini, D.J.; Ellis, C.D.; Hillyer, G.L., Lalka, G.K.; Liu, J.; VanAtten, M.K.; Chiu, A.T.; Wong, P.C.; Wexler, R.R.; Timmermans, P.B.M.W.M. Balanced Angiotensin II Receptor Antagonists I.. Bioorg. Med. Chem. Lett. 1994, 4, 2011. (d) Ashton, W.T.; Chang, L.L.; Flanagan, K.L.; Hutchins, S.M.; Naylor, E.M.; Chakravarty, P. K.; Patchett, A. A.; Greenlee, W.J.; Chen, T.-B.; Faust, K.A.; Chang, R.S.L.; Lotti, V.J.; Zingaro, G.J.; Schorn, T.W.; Siegl, P.K.S.; Kivlighn, S. D.. J. Med. Chem. 1994, 37, 2808.
- (15) 5-ethylester, 5-carboxaldehyde and 5-carboxamide imidazoles analogs of 5-carboxy imidazoles 7j and 7k have been prepared and exhibited lower AT, binding affinity than 7j and 7k..